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Abstract 

A new method of locating structural damage using measured differences in vibrational 

response and a numerical model of the undamaged structure has been presented. This method 

is particularly suited for complex structures with little or no symmetry. In a prior study the 

method successively located simulated damage from measurements of the vibrational response 

on two simple structures. Here we demonstrate that it can locate simulated damage in a 

complex structure. A numerical model of a complex structure was used to calculate the 

structural response before and after the introduction of a void. The method can now be 

considered for application to structures of programmatic interest. It could be used to monitor 

the structural integrity of complex mechanical structures and assemblies over their lifetimes. 

This would allow early detection of damage, when repair is relatively easy and inexpensive. It 

would also allow one to schedule maintenance based on actual damage instead of a time 

schedule.  

1. Introduction 

Structural health monitoring (SHM) is the process of implementing a strategy for 

detecting and identifying damage in a structure or machine.[1] Damage is a change in the 

material and/or geometrical properties of a structural that adversely affects its performance. It 

could be a local change in material properties, a loss of connectivity between components, or a 

change in boundary conditions. The SHM process generally involves periodic observation of a 

structure or mechanical system, extraction of damage-sensitive features from the 

measurements, and an analysis of the features to identify specific types of damage[1]. This is 

often followed by an assessment of expected future performance and probability of failure.  

 

SHM is motivated by the need within both industry and government to detect damage 

as early as possible. Early detection makes repair easier, minimizing cost and economic 

impact, as well as reducing the risk of failure and possible loss of life. In addition, there are 

potential cost savings in moving from the current time-based maintenance approach to 

condition-based approaches using SHM. Current implementations of SHM include conditional 

monitoring (CM) of rotating and reciprocating machinery[1], and the Shuttle Modal Inspection 

System (SMIS) for locating damaged components covered by the thermal protection tiles on 

the space shuttle[2,3]. Active research is currently underway for developing SHM systems for 

civil infrastructure (bridges, highways), monitoring of composite materials in aircraft, and 

assessing structural integrity of buildings (see reviews by Doebling[2] and Farrar[1]). With the 

further development of smart sensors and nanotechnology, SHM techniques will likely be 

incorporated directly into the design of structures and critical mechanisms.  

 



The predominant physical mechanism used for SHM is vibration, or the dynamic 

response, of the mechanical system. Since vibration (and more generally acoustics) depends 

directly on the material properties and geometrical integrity of the system, it is the most direct 

mechanism for assessing structural health[2]. It has long been known that local changes in 

material stiffness, mass, or geometry create measurable changes in the dynamic response of a 

structure. For practical reasons, the number of sensors is typically much less than the number of 

structural components. Thus most of the work in SHM has concentrated on using the low 

vibrational frequencies in which the entire structure takes part in the motion. This makes it 

difficult to solve the important inverse problem, in which damage is located and characterized 

from a limited number of vibration measurements[4]. Higher vibration frequencies would be 

more sensitive to the local structural changes induced by damage. However, these are more 

difficult to analyze since their characteristics are more sensitive to material inhomogeneities, 

dissipation, and uncertainties in the numerical models typically used to solve the inverse 

problem.  

 

Recently, a new set of techniques based on the invariance of wave propagation to time 

reversal has been used for source localization, imaging, and ultrasonic nondestructive 

evaluation [5,6,7]. These have been applied to imaging of a mass bonded onto an aluminum 

plate using Rayleigh-Lamb waves[8].  

 

In each of these studies the time-reversal imaging was obtained either by simulation or 

by measuring the entire wave field in geometries where the interior of the object was 

accessible. In this paper, we describe a time-reversal technique for detecting and localizing 

damage in the usually inaccessible interior of a structure. The technique is implemented in the 

context of structural health monitoring, where the appearance of damage causes a detectible 

change in the vibrational response. After a brief theoretical justification of the method, we 

describe the initial proof-of-concept experiments for simple shapes. Finally, we show the 

numerically simulated results for a complex object.  

2. Localization method: theory 

In structural health monitoring, a set of sensors would be emplaced in the structure and 

the vibrational response checked periodically. A change in response would indicate the 

presence of damage, typically localized when detected early. Though structural vibration is 

described by the equations of linear elasticity, we will present the theory for the acoustic case. 

The generalization to elastic structures is straightforward.  

 

Let ( )x  represent the acoustic (vibrational) field within an object at a given 

frequency  . The field is described by the Helmholtz equation  
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0 ( ) ( )x xk U s      (1) 

where 0k  is a wave number characteristic of the structure. The function ( )xs  represents the 

sources of waves. The potential function ( )xU  specifies the variations from the background 

wave number that describe the internal structure of the object. The governing equation is 

supplemented by boundary and initial conditions that together uniquely specify the acoustic 

field. Let 0( )xU  describe the initial structural configuration of the object, and ( )xU  the 

deviations from the initial configuration caused by structural damage. The change   in the 

acoustic field caused by the presence of damage is described by the equation  
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where effs  is an effective source given by  

  2

0 0( ) ( ) ( ) ( )x x x xeffs k U       (3) 

The quantity 0  is the acoustic field for the undamaged configuration. Ideally for damage 

characterization, we would like to estimate the change in potential U  from a set of discrete 

measurements of the perturbed acoustic field. The presence of the perturbed field   in the 

expression for the effective source (eq. 3) makes this inverse problem nonlinear. It is a difficult 

ill-posed problem that is usually solved using an iterative algorithm that involves guessing an 

initial solution, calculating the expected perturbed field, comparing with the measured data, 

then updating the solution[4]. This is repeated until the solution converges or the deviations 

from the data decrease below a predetermined threshold. The solution of the inverse problem is 

an area of active research. However, it is often valuable to know just the location of the 

damaged region, especially when this knowledge is supplemented by other indications of 

damage (e.g. chemical breakdown products).  

 

The effective source effs  in the equation for the perturbed acoustic field   is 

proportional to the perturbed potential U . Structural damage (represented by U ) in its 

early stage is often localized to a small region in the structure. The damage acts like a localized 

source for the perturbed acoustic field. In addition, the propagation of the perturbed field is 

governed by the initial unperturbed configuration ( 0U  in eq. 2). Thus the localization problem 

is: given a discrete set of measurements of an acoustic field on the external surface of a 

structure, estimate the region of support for the internal source distribution that generates the 

field in the initial configuration of the structure. We will calculate an approximate solution to 

this problem using a numerical model of the structure in its known undamaged state. It 

proceeds in four steps: 1) measure the dynamic response of a structure at a discrete set of 

locations before and after damage, 2) subtract the responses to calculate the perturbed field at 

each location, 3) time-reverse the perturbed field values at each location and numerically 

propagate them into a model of the undamaged structure, 4) identify the source location with 

the peak in the time-reversed field. More formally, if n  are the values of the perturbed field 

at xn  1 2n … N    , we calculate the backpropagated field  
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where 0( )x xnG   is the Green’s function,  
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The backpropagated field can be interpreted as an acoustic field but it is more useful to regard it 

as a detection map, similar to the ambiguity function of matched field processing[9]. The 

maxima in the field are probable locations of damage that create an effective source for the 

measured perturbed field. 

  

Though we have presented the theory of the method for a single frequency, it remains 

valid for broadband excitations. The remarkable ability of time-reversal arrays in focusing 

energy back to a source is well known (see review by Fink[6]). This focusing effect is 

enhanced for difficult or random media[10,11,12,13,14]. In our approach to damage detection, 

we make use of the time-reversal focusing property in the numerical backpropagation. We can 

then expect the performance of the method to be particularly good for complicated structures 

with little or no symmetry. However, our initial tests used symmetrical objects because of the 

wide range of structures that incorporate components with these shapes.  



 

 

Figure 1. Numerical model of aluminum cylinder for damage detection experiment. E indicates the postion 

of the forcing. The yellow dots show the positions of the Fiber-Bragg strain sensors. 

 

 

Figure 2. Numerical model of aluminum cylinder for damage detection experiment showing small cube 

attached at one end to simulate damage. E indicates the position of the forcing. The black dots show the 

positions of the 20 simulated sensors in a numerically simulated experiment. 

3. Performance for simple objects 

The first test of the damage detection method used a thin-walled (3 mm thick) 

aluminum cylinder (212 mm diameter). Two Fiber-Bragg optical strain sensors were attached 

to the outer wall of the cylinder (Fig. 5). The vibrational response was measured as a 

time-dependent force was applied at one end. The forcing function was a swept sine wave from 

1 kHz to 5 kHz. After the response was recorded, a small cubic mass of aluminum (40 gm) was 

attached near the edge of the cylinder opposite the forcing (Fig. 1). The differences between the 

responses at each sensor location were time-reversed and applied as normal forces in a 

numerical simulation of original cylinder. The magnitude of the resulting displacement field in 

the numerical model is shown in Fig. 4. This can be compared with the results from a numerical 

simulation of an experiment using 20 sensors (Fig. 3). We see a maximum in the displacement 

magnitude near the location of the added mass. There is a remarkable agreement between the 

numerically simulated experiment with 20 sensors and the actual experimental data with two 

sensors. In both cases there are secondary maxima (one associated with the forcing point) due 

to the symmetry of the cylinder.  



 

 

Figure 3. Magnitude of the numerically simulated displacement field obtained by backpropagating the 

differences between the simulated displacements at the 20 locations in Fig. 1 

 

 

Figure 4. Magnitude of the numerically simulated displacement field obtained by backpropagating the 

differences between the strains measured by the two Fiber-Bragg sensors. Local maxima can be seen at the 

positions of the forcing and the added mass. 

  



 

 

Figure 5. Diagram of the two nested hemispheres (top) for the second test of the damage detection method. 

Lower figure shows a numerical model of the hemispheres with a localized bend in the inner sphere to 

model a void. 

 

 

Figure 6. Power spectra of one of three Fiber-Bragg sensors before (blue) and after (red) bending of the 

lipo of the inner hemisphere. The main difference between spectra is the presence of the peak for the bent 

configuration (black oval) near 2600 Hz. 

 



 

Figure 7. Magnitude of the displacement for the backpropagated field for the nested spheres. A maximum 

occurs at the location of the bent region (damage) 

The second test used a pair of nested hemispheres held together by a rod at the poles 

(Fig. 5). The outer hemisphere was composed of steel and the inner hemisphere composed of 

aluminum. Three Fiber-Bragg strain sensors were attached to the surface of the outer 

hemisphere. A small void at the position of the lip was created by bending a section of the inner 

hemisphere inward. The vibrational responses before and after bending were recorded by the 

three strain sensors. Figure 6 shows the power spectra from one sensor for the original and bent 

configurations. The main difference is a large peak near 2600 Hz in the spectrum of the bent 

configuration. If the response at this frequency is time-reversed and applied as a normal force 

in a numerical model of the hemispheres, a maximum is seen in a map of the displacement 

magnitude (Fig. 7) at the location of the bend.  

 

These initial experimental tests of the damage localization method were part of an 

earlier feasibility study. They showed that the method was robust to measurement noise and 

other uncertainties inherent in experimental measurement for simple objects. The method had 

never been applied to a complex structure typical of most applications of interest. As a 

preliminary investigation of this issue, the current project tested the backpropagation method 

for damage localization on a numerical simulation of a complex structure. The specific 

numerical structural model is shown in Fig. 8. It consists of a sphere nested between several 

disks and composed of five different materials. The normal displacement at 18 locations on one 

end were calculated when an impulse was applied at one point. The model was then modified 

by reducing the density and elastic modulus of four small elements in the lexan to 1% and 

0.1%, respectively, of their original values. This simulated the presence of a small void in the 

Lexan. Figure 9 shows the displacements at the 18 locations before and after modifying the 

four elements in the Lexan. It also shows the time-reversed difference used as the normal 

forcing at the 18 locations for the simulation of the backpropagated field. Figure 10 shows the 

magnitude of the axial strain of the backpropagated field. The maximum of the strain field 

occurs at the position of the void. Additional tests on two other complex structures showed 

similar results. These results establish that the backpropagation method of damage location 

applies in principle to complex objects. The method can now be considered for specific 

applications of programmatic interest.  

 



 

Figure 8. Numerical model of a sphere between disks used for calculating the normal displacement at 18 

sample locations in response to an impulse applied at the upper end. The responses were calculated for the 

original configuration without the void and for the void configuration. 

 

 

Figure 9. Normal displacements at the 18 sample locations in Fig. 8 for the original (left) and void 

configuration (center). The time-reversed normal forces for the backpropagation step are shown on the 

right. 

 



 

Figure 10. Magnitude of the axial strain for the backpropagated field in the numerical model of a sphere 

between disks. A maximum is clearly seen at the position of the simulated void. 

4. Summary 

A new method of locating structural damage using measured differences in vibrational 

response and a numerical model of the undamaged structure has been presented. This method is 

particularly suited for complex structures with little or no symmetry. In a prior study the 

method successively located simulated damage from measurements of the vibrational response 

on two simple structures. Here we demonstrate that it can locate simulated damage in a 

complex structure. A numerical model of a complex structure was used to calculate the 

structural response before and after the introduction of a void. The method can now be 

considered for application to structures of programmatic interest. It could be used to monitor 

the structural integrity of complex mechanical structures and assemblies over their lifetimes. 

This would allow early detection of damage, when repair is relatively easy and inexpensive. It 

would also allow one to schedule maintenance based on actual damage instead of a time 

schedule.  
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